Si deseas profundizar en esta entrada; cliquea por favor donde esta escrito en “negrita”. Muchas gracias.
Explicar qué dice la física actual acerca de la posibilidad de viajar en el tiempo sorteando las ecuaciones matemáticas y los conceptos más complejos es un auténtico reto. Sin embargo, estamos convencidos de que es posible hacerlo de una forma didáctica que cualquier persona con curiosidad puede seguir sin necesidad de conocer minuciosamente qué propone la teoría general de la relatividad.
Afortunadamente, no hemos abordado este desafío solos; hemos contado con la ayuda de dos físicos teóricos españoles expertos en esta materia. Ambos tienen mucha experiencia en el ámbito de la investigación y una capacidad didáctica que está fuera de toda duda. Álvaro de Rújula es un prestigioso físico de partículas que, entre muchos otros logros, ha dado clase en Harvard y ha liderado la división de física teórica del CERN. Incluso ha tenido la oportunidad de viajar en el tiempo para hablar cara a cara con Albert Einstein (en la ficción y con mucha gracia, claro).
El currículo de José Luis F. Barbón es igualmente impresionante. Este físico teórico es un experto en teoría cuántica de campos, gravedad cuántica y agujeros negros, entre otras materias. Ejerce como investigador en el CSIC, y actualmente dirige el Instituto de Física Teórica (IFT), una institución en la que trabaja mano a mano con Álvaro y otros investigadores. Como estáis a punto de comprobar, ambos tienen una vocación didáctica muy evidente, por lo que sus conferencias (algunas están disponibles en YouTube) son muy disfrutables.
Indagar de una forma rigurosa en la física de los viajes en el tiempo requiere que coqueteamos con la geometría del continuo espacio-tiempo. Y también con la teoría general de la relatividad. Es un terreno profundamente hipotético y especulativo, pero, aun así, la física teórica nos propone algunas respuestas extraordinariamente interesantes. Y sorprendentes. Pero lo mejor de todo es que recorrer este camino de la mano de estos dos físicos es una experiencia irrepetible. Prometido.
Vídeos de xataka – Dailymotion
La velocidad de la luz es absoluta.
No hay mejor forma de iniciar nuestro viaje que intentando afianzar nuestra percepción acerca del continuo espacio-tiempo y repasando la que sin duda es la propiedad más asombrosa de la luz: la invariabilidad de su velocidad en un medio determinado independientemente del estado de movimiento o reposo de la fuente que la emite y del observador. Este atributo es patrimonio exclusivo de la luz, por lo que no lo comparte con ningún otro objeto del universo. Álvaro nos los explica de una forma asequible:
«El espacio y el tiempo son tan fundamentales que podemos hablar de ellos, pero sin llegar a identificar con la máxima precisión qué son en realidad. Podríamos asimilar el espacio a una especie de conjunto de fichas de dominó, de manera que podemos pegar unas a otras en un plano y después colocar otro plano encima construido de la misma manera. Obviamente el espacio realmente no es así, pero este símil puede ayudarnos a entender de alguna forma su naturaleza», puntualiza.
«En cualquier caso, lo primero que podemos hacer es intentar entender la relación que existe entre el espacio y el tiempo. Si tenemos un espacio plano y en él hay dos hormigas podemos dibujarlas en un cierto instante del tiempo, y luego en un instante posterior podemos dibujar un plano encima con las mismas dos hormigas, pero colocadas en posiciones diferentes. De esta forma podríamos construir una especie de sándwich en el que el espacio discurre en la dirección horizontal de mi dibujo, y el tiempo en la vertical».
«No obstante, lo que acabamos de hacer es más que un simple dibujo. Desde finales del siglo XIX y culminando con el trabajo de Einstein de 1905 (la teoría especial de la relatividad), sabemos que hay algo muy curioso que relaciona el espacio y el tiempo: existe una velocidad máxima. No puedes viajar a una velocidad superior a la de la luz. Si tengo un cohete con un señor dentro que está avanzando a 10 km/h respecto al cohete, y el cohete con respecto a mí que estoy en la Tierra también está avanzando a 10 km/h, el señor con respecto a mí avanza a 20 km/h si tanto él como el cohete se desplazan en la misma dirección».
«Sabemos que hay algo muy curioso que relaciona el espacio y el tiempo: existe una velocidad máxima. No puedes viajar a una velocidad superior a la de la luz».
«Esta idea es intuitiva, pero, sin embargo, si la velocidad del cohete fuese 3/4 partes de la velocidad de la luz, y la del señor del interior del cohete en relación al propio cohete también fuese 3/4 partes de la velocidad de la luz, al observarlos desde fuera yo creería que el señor avanzaría a una velocidad de 3/4+3/4 de la velocidad de la luz. Es decir, al 150% de la velocidad de la luz, que es una cantidad mayor que la velocidad de la luz. Sin embargo, este cálculo está mal hecho. En realidad, nuestro universo no funciona así. Si hacemos el cálculo correctamente la velocidad total del señor del interior del cohete con respecto a mí será un poco inferior a la velocidad de la luz», concluye Álvaro.}
Esta ilustración elaborada por Álvaro refleja la suma de velocidades que hemos descrito en el ejemplo del cohete cuando ambos objetos se desplazan a una velocidad inferior a la de la luz.
José Luis prosigue la explicación de Álvaro proponiéndonos otro experimento mental que también puede resultarnos útil para interiorizar esta crucial propiedad de la luz antes de continuar nuestro viaje:
«En la física a la que estamos acostumbrados no pensamos que el ritmo de un reloj dependa de su movimiento. Si sincronizamos dos relojes y nos llevamos uno en un viaje en tren para posteriormente volver a reunirlos, el desplazamiento a cierta velocidad de uno de ellos no parece tener ningún efecto en la sincronización. En la física newtoniana, la de antes de la relatividad, el tiempo es absoluto. Esto significa que el ritmo de un reloj ideal que ni se atrasa ni se adelanta es el mismo en todas partes. Es universal. No depende de dónde está el reloj, y tampoco de su estado de movimiento».
«Para describir los fenómenos de nuestra vida cotidiana no necesitamos cambiar esta hipótesis simplificadora. Sin embargo, lo que descubrió Einstein es que esto no es correcto. A finales del siglo XIX los físicos se pusieron a estudiar con más detalle la luz, y se dieron cuenta de que su velocidad es rara porque es absoluta. Esto quiere decir que da igual cómo la midas, e incluso si te mueves respecto a la fuente, o si es la fuente la que se mueve respecto a ti; siempre obtienes la misma velocidad. Esto para ellos fue muy chocante porque todas las velocidades son relativas. Si voy por la autopista y un coche me adelanta lo veo adelantarme despacio, pero si estoy quieto en el arcén lo veo pasar a toda velocidad», asevera José Luis.
«Al combinarlas las velocidades se suman o se restan, pero que haya un objeto, que es la luz, con una velocidad absoluta es chocante. Los experimentos indicaban que esto es así, pero no se entendía. Einstein observó que, efectivamente, el espacio es obviamente relativo en el sentido de que la distancia que recorre un objeto depende del lugar desde el que estoy mirándolo. Si voy al encuentro de ese objeto la distancia que me separa de él es más corta. Esto significa que el espacio es relativo desde el punto de vista del observador. A partir de esta reflexión Einstein concluyó que si el espacio es relativo y el tiempo es absoluto, entonces su cociente es relativo».
«En este contexto si quiero que el cociente entre el espacio y el tiempo para un cierto fenómeno sea un valor absoluto tengo que hacer el tiempo relativo también. De esta forma las dos relatividades, la del tiempo y la del espacio, se cancelan. Einstein se dio cuenta de cómo debe variar el tiempo de acuerdo con el estado de movimiento del observador para que la velocidad de la luz sea siempre la misma. Esto es, en definitiva, lo que se observaba en los experimentos. A partir de aquí en vez de intentar demostrar que la luz tiene una velocidad absoluta, algo que parece imposible a partir de la teoría newtoniana, decidió asumir que existe una velocidad absoluta y comprobar si esto es consistente con todo lo demás».
«Entonces se dio cuenta de que la física no se destruía ni se volvía inconsistente. De hecho, se percató de que podía reconstruir todo su armazón asumiendo que existía una velocidad absoluta y sin que por ello se produjesen inconsistencias. Lo único que sucedía era que había unas fórmulas que tenían unas modificaciones que se hacían visibles a velocidades cercanas a la de la luz. Cuanto más rápido iba un objeto comparado con la velocidad de la luz, más se parecía su movimiento al de la luz, y más efectiva era la relatividad del tiempo desde el punto de vista de que los relojes no marchan igual si se están moviendo».
«La clave es que para encajar todo esto Einstein decidió modificar el concepto del tiempo. En su teoría el ritmo del tiempo depende del estado de movimiento de un objeto, pero también depende de si estás en un campo gravitacional intenso. Si estás en uno de ellos, aunque estés parado, el ritmo con el que transcurre el tiempo es más lento. Si pasas una temporada cerca de un agujero negro el tiempo para ti transcurrirá más despacio que para alguien que está en la Tierra. Simplemente vivimos en un mundo que tiene estas propiedades. Podríamos vivir en un mundo newtoniano, pero no es el caso. Como la velocidad de la luz es absoluta y es finita, pasan estas cosas», concluye José Luis sin disimular su entusiasmo.
«Einstein decidió modificar el concepto del tiempo. En su teoría el ritmo del tiempo depende del estado de movimiento de un objeto, pero también depende de si estás en un campo gravitacional intenso».
Los viajes en el tiempo hacia el futuro y el principio de equivalencia.
«La existencia de una velocidad máxima nos ha obligado a cambiar nuestras ideas acerca del espacio y el tiempo. De hecho, esto es lo que describió Einstein en 1915 con su teoría general de la relatividad. A partir de aquí podemos observar que viajar al futuro es fácil. Si observamos el reloj de un piloto de avión que acaba de dar una vuelta a la Tierra y lo comparamos con el de su hermano gemelo que se quedó en casa, veremos que el del piloto va retrasado a pesar de que inicialmente estaban sincronizados. En cierto sentido este último ha viajado al futuro de su hermano gemelo», expone Álvaro.
«Parece absurdo, pero este experimento se ha hecho y funciona perfectamente. De hecho, se repite todos los días miles de veces a causa del GPS. Los satélites de esta red para localizarnos tienen que tener en cuenta que como se están moviendo respecto a nosotros sus relojes se retrasan respecto al nuestro. De esta forma, llevando esta idea al extremo el piloto podría viajar muy deprisa y volver cuando su hermano gemelo tiene 80 años y él solamente tiene 30. Este efecto no solo es posible, sino que se demuestra todos los días millones de veces».
Cuando no se ve sometida a un campo gravitacional muy intenso la luz sigue una trayectoria recta a través del continuo espacio-tiempo, pero bajo el influjo de un campo gravitacional como el de la Tierra su trayectoria se curva ligeramente.
«Imaginemos que regresamos a nuestro cohete en el vacío y vemos en su interior al astronauta flotando debido a que no se ve afectado por la acción de ninguna fuerza. Si el cohete empieza a acelerar y colocamos debajo de los pies del astronauta una báscula comprobaremos que ya no marca cero como cuando el astronauta flotaba; marcará, por ejemplo, 75 kg, debido a que el cohete está acelerando con la misma aceleración que la gravedad sobre la Tierra».
«Esta observación fue la que llevó a Einstein a formular la hipótesis conocida como principio de equivalencia, que nos dice que la aceleración en un espacio lo suficientemente pequeño y la gravedad son lo mismo. Esto significa que la gravedad es un aspecto de la aceleración, y la aceleración está íntimamente relacionada con la gravedad», nos explica Álvaro con el propósito de que reparemos en uno de los principios fundamentales de la relatividad general.
La materia curva el espacio-tiempo.
Álvaro nos propone que continuemos adelante indagando un poco más en la relación que existe entre la materia y el continuo espacio-tiempo. Y para hacerlo nos sugiere un nuevo experimento mental muy sencillo:
«Si dibujamos un triángulo en un plano por más o menos alargado que sea sus ángulos siempre sumarán 180 grados. Esta es la propiedad que tiene un espacio plano. Sin embargo, si dibujo un triángulo sobre un espacio con geometría curvada, como, por ejemplo, la superficie de una esfera, sus ángulos sumarán 270 grados. Una de las predicciones de la teoría de la relatividad nos dice que la luz puede ser desviada por un objeto que tiene masa, de manera que podemos tomar tres puntos del espacio para formar con ellos un triángulo, colocar en cada uno de ellos un láser y enviar un haz de luz de uno a otro para conectarlos con rayos de luz en línea recta».
Los ángulos de un triángulo sobre un espacio plano suman 180 grados, pero sobre un espacio curvado suman 270 grados. Los objetos con masa o energía actúan sobre la estructura del espacio-tiempo curvándolo.
«Lo curioso es que si ahora coloco la Tierra, que es un objeto con una gran masa, en medio de estos puntos provocaré que la luz se curve un poco, de manera que los ángulos que describían los haces de luz serán un poco mayores que los ángulos iniciales. La suma de los tres ángulos cuando la luz viaja en un espacio curvado ya no será 180 grados; será una cifra algo mayor que esta cantidad. Esta es la forma en que cualquier objeto que tenga masa o energía actúa sobre la estructura del espacio-tiempo, provocando que sea curvada y no plana», concluye este físico de partículas.
Imagen de portada: Jordan Benton
FUENTE RESPONSABLE: Xataka. Por Álvaro de Rújula y José Luis F. Barbón.
Ciencia/Investigación/Espacio/Física/Cosmos/Viajes en el tiempo
Física Cuántica/Astrofísica/Universo/
Agujero de gusano/ Puente de Einstein-Rosen.