El gato de Schrödinger puede convertirse en un elefante: estaría vivo y muerto a la vez.

La superposición cuántica escala el mundo macroscópico: se ha conseguido en moléculas orgánicas y puede lograrse en virus y pequeños animales de un milímetro de ancho. El gato de Schrödinger puede convertirse también en un elefante que está vivo y muerto a la vez.

Los científicos están cada vez más cerca de trascender los límites del mundo cuántico. Se han propuesto probar el principio de superposición cuántica a escalas macroscópicas sin precedentes: colocar un objeto levitando en dos ubicaciones a la vez, separadas por una distancia comparable a su tamaño.

Un proyecto europeo, llamado Q-Xtreme, acaba de arrancar con un presupuesto de más de 13 millones de euros, con el propósito de pisar por primera vez la frontera que separa al mundo cuántico del universo macroscópico.

El universo cuántico no sigue las leyes que rigen al mundo físico ordinario, aunque ambos estén describiendo la materia y la energía de todo lo que conocemos.

Es el caso, por ejemplo, de la superposición cuántica, según la cual un sistema físico como un electrón existe en diversos estados posibles hasta que la medición de un científico concreta una de esas posibles configuraciones.

¿Gato o elefante de Schrödinger?

Un ejemplo bastante conocido de esta superposición se remonta a 1935, cuando el físico Erwin Schrödinger propuso un ejemplo imaginario para explicar esta paradoja conocida como el gato de Schródinger.

Planteó que, si tenemos un gato dentro de una caja en la que hemos introducido por un lado alimento y por el otro veneno, al final es el dueño del gato el que decide su suerte al abrir la caja: estará vivo o muerto según lo que el observador quiera encontrarse.

En este ejemplo, el gato no deja de ser una extrapolación imaginaria de un sistema cuántico. Lo que se intenta averiguar ahora es si esa superposición de estados puede darse a niveles más complejos de la materia: lo que pasa con un gato, ¿ocurriría también con un elefante, que estaría vivo y muerto a la vez hasta que alguien abra su jaula?

¿Dónde están?

Las confirmaciones experimentales de superposiciones cuánticas macroscópicas comenzaron en 1927 utilizando electrones, y hoy han alcanzado el tamaño de moléculas orgánicas que contienen miles de átomos.

En 1999, investigadores de la Universidad de Viena demostraron que moléculas de 0,7 nanómetros, mucho más grandes y pesadas que un átomo individual, podían superponerse.

Este año, dos equipos de investigadores, en Austria y Suiza, han logrado de forma independiente congelar nanopartículas tan minúsculas, de solo 100 a 140 nanómetros de diámetro, casi en su totalidad en su estado cuántico de energía más baja, y fijarlos en su lugar con una precisión sobrenatural.

El objetivo es poner estos objetos en una superposición cuántica, en la cual es imposible decir, antes de medirlos, dónde están realmente.

Y también descubrir cómo desaparece esa superposición, un proceso no menos importante: ocurre cuando la función de onda de las partículas de un objeto pierde coherencia y se convierte en una masa de pequeñas ondas en la que la superposición parece desaparecer.

Decoherencia sutil

A este proceso se le denomina decoherencia y es el principal obstáculo para realizar superposiciones cuánticas de objetos grandes que duren lo suficiente para ser observados: cuanto más grande es el objeto, es probable que tenga más interacciones entre sus partículas y más rápido ocurra la decoherencia.

Eso significa que, cuantas más partículas hay en un objeto, más difícil resulta mantener la superposición cuántica. Por lo tanto, si queremos que la superposición tenga una duración significativa con objetos grandes, la solución es restringir las interacciones entre las partículas que lo forman aislando sus respectivos sistemas cuánticos.

Si esto fuera posible, no habría en teoría límite alguno en el tamaño de un objeto que pueda mantener la superposición: el gato de Schrödinger podría convertirse en un elefante y mantener su ambigüedad hasta que un observador intervenga.

Escalada cuántica

La interferencia deliberada de las interacciones entre partículas (decoherencia) se ha conseguido en la práctica con moléculas orgánicas de 6 nanómetros de ancho y el año pasado incluso con una molécula biológica, que alcanzaron así la superposición cuántica sostenida.

El siguiente paso será conseguirlo con virus e incluso con pequeños animales de un milímetro de ancho, como son los tardígrados, señala la revista Quanta.

El proyecto Q-Xtreme se propone seguir escalando experimentos con el mismo espíritu con el que se concibió el gato de Schrödinger y explorar qué sucede con la mecánica cuántica a escalas de tamaño donde la gravedad importa: metafóricamente, con un elefante.

Expandir la escala cuántica a tamaños donde la gravedad importa podría enseñarnos cosas nuevas sobre la mecánica cuántica, la gravedad y los aspectos ocultos del universo, consideran los investigadores.

Física cuántica y gravedad

Los investigadores destacan también que demostrar el principio de superposición cuántica en regímenes de masas sin precedentes abre la puerta para estudiar experimentalmente los modelos de materia oscura y energía oscura.

Estas superposiciones cuánticas macroscópicas darán lugar asimismo a precisiones de detección ultra altas, con aplicaciones en detección de fuerza inercial, mediciones de interacciones de corto alcance y física gravitacional.

Para conseguir estos objetivos, Q-Xtreme llevará la física cuántica macroscópica a un nivel completamente nuevo mediante la preparación de superposiciones cuánticas macroscópicas de objetos que contienen miles de millones de átomos, impulsando el estado de la técnica actual en al menos cinco órdenes de magnitud en masa, según se explica en la presentación del proyecto.

¿Existe la frontera cuántica?

Nadie sabe hasta dónde, en principio, puede continuar esta expansión de la física cuántica.

¿Existe, como algunos piensan, un límite de tamaño en el que simplemente desaparece, quizás porque el comportamiento cuántico es incompatible con la gravedad (que es insignificante para los átomos y las moléculas)? ¿O no hay un límite fundamental a lo grande que puede ser la cuántica?, se pregunta la revista Quanta.

¿Qué tamaño puede tener un objeto y seguir actuando como una onda cuántica? En teoría, cualquier tamaño, añade.

En los próximos años, seguramente, estaremos muy cerca de la respuesta: Q-Xtreme termina en 2027 y espera haber resuelto una cuestión que puede cambiar nuestra forma de entender y gestionar el mundo.

Imagen de portada : Gerd Altmann en Pixabay

FUENTE: Tendencias – Por Eduardo Martínez de la Fe – Periodista Científico – 

Fotografían a una partícula cuántica en un «estado extracorporal».

En un estado exótico de la materia, los electrones se descomponen en dos cuasi partículas cuánticas, una que permanece inmóvil, y otra que vive una «experiencia extracorporal» mientras rebota como un fantasma en un cristal. Hay fotos.

Científicos del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab) de Estados Unidos han fotografiado a una partícula cuántica en una especie de «estado extracorporal» totalmente inesperado, rebotando como un fantasma por un material cristalino.

Es la primera vez que los científicos consiguen captar imágenes directas de cómo los electrones se descomponen en partículas similares a espines llamadas espinones, y en partículas similares a cargas eléctricas llamadas holones, después de ser introducidos en un nuevo estado de la materia conocido como Líquido de spin cuántico (QSL).

Ese estado exótico de la materia QSL es como una especie de «líquido» que se caracteriza, entre otras cosas, por su frenesí de entrelazamiento cuántico.

Las partículas cuánticas tienen dos propiedades inherentes e inseparables: el espín, que refleja su momento angular (estado de rotación), y su carga eléctrica. Ambas se pueden alterar en un entorno QSL.

Para entender la importancia de este descubrimiento hay que retroceder hasta 2006, cuando investigadores de la Universidad de Stanford comprobaron por primera vez experimentalmente una teoría que llevaba 40 años esperando verificación.

Ilustración de un electrón que se rompe en partículas fantasma de espín y halones dentro de un líquido de espín cuántico. (Crédito: Mike Crommie et al./Berkeley Lab)

Fotos históricas

Trabajando en la Fuente de Luz Avanzada (ALS) del Laboratorio Nacional Lawrence Berkeley del Departamento de Energía de Estados Unidos, el mismo que ha conseguido las históricas fotos, los científicos pudieron comprobar entonces que la excitación colectiva de un sistema de electrones puede conducir a la aparición de dos nuevas cuasipartículas llamadas «espinones» y «holones».

En este estado, el espinón transporta información sobre el espín de un electrón y un holón transporta información sobre su carga, y lo hacen como entidades separadas e independientes.

Es algo paradójico, ya que, trasladado el fenómeno al mundo ordinario, es como si las ruedas de un coche estuvieran orientadas a la derecha y el coche girara a la izquierda, explican los investigadores.

Hasta entonces no se había podido confirmar ni la existencia ni el comportamiento de espinones y halones. Quince años después se ha obtenido el primer testimonio gráfico de ese singular proceso.

Imagen real

“Otros estudios han visto varias huellas de este fenómeno, pero ahora tenemos imágenes reales del estado en el que vive el espinón. Esto es algo nuevo”, explica el líder del nuevo estudio, Mike Crommie, en un comunicado.

Otro de los investigadores, Sung-Kwan Mo, añade: “Los espinones son como partículas fantasma. Son como el gran pie de la física cuántica: la gente dice que los ha visto, pero es difícil demostrar que existen. Con nuestro método, hemos proporcionado algunas de las mejores pruebas hasta la fecha».

En una QSL, los espinones se mueven libremente transportando calor y giro, pero sin carga eléctrica. Para detectarlos, la mayoría de los investigadores se han basado anteriormente en técnicas que buscan sus firmas de calor.

Ahora, como se informa en la revista Nature Physics, Crommie, Mo y sus equipos de investigación, han demostrado cómo caracterizar los espinones en las QSL mediante imágenes directas de cómo se distribuyen en un material.

División insólita

Lo que pudieron apreciar en la imagen obtenida es que, cuando se inyecta en una QSL, un electrón se rompe en dos partículas diferentes, espinones y halones.

Las imágenes obtenidas de esta «separación espín-carga» de electrones, que se produjo en muestras de una sola capa de un sólido cristalino con solo tres átomos de espesor, evidencian en primer lugar que los halones se congelan en su posición.

Forman lo que los científicos llaman una onda de densidad de carga: tiene la forma de una estrella de David (de seis puntas, formada por dos triángulos que se cruzan en seis lugares).

Esquema de la retícula de espín triangular y el patrón de onda de densidad de carga de estrella de David en una monocapa de diseleniuro de tantalo. Cada estrella consta de 13 átomos de tantalio. Los giros localizados están representados por una flecha azul en el centro de la estrella. La función de onda de los electrones localizados está representada por un sombreado gris. (Crédito: Mike Crommie et al./Berkeley Lab)

Experiencia extracorporal

Sin embargo, la imagen permite observar también que los espinones se someten a una «experiencia extracorporal» a medida que se separan de los halones congelados en su posición, y se mueven libremente a través del material.

Esto es inusual, ya que, en un material convencional, los electrones transportan tanto el giro como la carga a medida que se mueven. Estas dos propiedades «no suelen romperse de esta manera tan divertida», dice Crommie.

Y añade: “parte de la belleza de este tema es que todas las interacciones complejas dentro de una QSL de alguna manera se combinan para formar una partícula fantasma simple, que sencillamente rebota dentro del cristal”.

Cúbits más robustos

Valorando la importancia de su descubrimiento, los investigadores consideran que las QSL podrían algún día formar la base de los bits cuánticos (cúbits) robustos que se utilizan para la computación cuántica.

En la computación convencional, un bit codifica la información como un cero o como un uno, pero un cúbit puede contener tanto un cero como un uno al mismo tiempo, acelerando así potencialmente ciertos tipos de cálculos.

Comprender cómo se comportan los espinones y halones en las QSL podría potenciar la investigación en la computación de próxima generación, según los autores de este estudio.

Otra motivación para comprender el funcionamiento interno de las QSL es que se ha predicho que serán un precursor de la superconductividad exótica. Los investigadores se proponen probar esa predicción en la Fuente de Luz Avanzada (ALS).

Referencia

Si lo deseas; por favor clickea en el siguiente link. Muchas gracias.

Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Wei Ruan et al. Nature Physics (2021). DOI:https://doi.org/10.1038/s41567-021-01321-0

Foto superior: Jr Korpa. Unplash.

FUENTE: TENDENCIAS – Partícula cuántica – electrones- espinones-holones- Liquido de spin cuántico- Por Eduardo Martínez de la Fe (Periodista Científico).

La causalidad se disipa en el mundo cuántico

El orden temporal del mundo no siempre se cumple en el universo cuántico, sugiriendo que el futuro puede influir en el pasado y que el tiempo y el espacio son subproductos de fenómenos naturales todavía incomprendidos.

Durante poco más de una década, los físicos han estado estudiando un extraño fenómeno en el mundo cuántico. En una escala muy pequeña, es posible que el orden temporal entre diferentes eventos no siempre esté bien definido.

La física cuántica describe el mundo microscópico con una precisión impresionante. Sus predicciones nunca han sido contradichas por la experiencia. Pero también es famoso por sus rarezas.

De hecho, los objetos microscópicos se comportan de forma contraria a la intuición. Primero, sus propiedades (como su posición y velocidad) a veces solo pueden tomar ciertos valores muy precisos.

Para hacer una analogía con nuestro mundo macroscópico, todo sucede como si, cuando nos movemos en línea recta, solo pudiéramos movernos a «saltos» de un metro, sin que nunca pudiéramos tener una posición intermedia.

En segundo lugar, dos entidades pueden influir entre sí estando separadas por grandes distancias, a velocidades superiores a las de la luz.

En tercer lugar, algunos objetos tienen propiedades (como su posición o velocidad) que se encuentran en «superposiciones cuánticas» de varios valores.

¿Qué significa, para un objeto, estar en una «superposición» de varias posiciones? ¿El objeto no está en ninguna parte? ¿En todas partes al mismo tiempo? Estas preguntas han animado a físicos y filósofos durante décadas.

Una extrañeza más en el mundo cuántico

Sin embargo, en la última década han surgido nuevos descubrimientos que llevan la complejidad del problema al siguiente nivel.

El trabajo de físicos dispersos por todo el mundo indica que, cuando ocurren dos eventos en el mundo cuántico, el orden temporal de estos eventos a veces es indefinido.

En nuestra escala, siempre es posible saber si una persona estornudó primero antes de disculparse, o al revés. Sin embargo, la física cuántica parece indicar que, a pequeña escala, podría ser que, a veces, ninguna de estas dos posibilidades es la correcta.

Lo cierto es que el orden temporal entre diferentes eventos está fuertemente ligado a relaciones causales. De hecho, una causa siempre debe preceder a su efecto. Por lo tanto, si el orden temporal entre diferentes eventos no está definido, también podría pasar lo mismo con su orden causal.

¿Cómo dar sentido a un mundo en el que las cosas no se desarrollan en un orden bien definido? Esta pregunta es un desafío para los filósofos de la ciencia. Sin duda, se ofrecerán respuestas audaces, y hasta es posible que tengamos que aceptar un cuestionamiento profundo de nuestra visión del mundo físico.

Una experiencia inquietante

Podemos observar órdenes causales indefinidos en el laboratorio, por ejemplo gracias al ” interruptor cuántico”, una disposición experimental muy particular que se ha llevado a cabo en varias ocasiones.

Detallamos uno de estos logros experimentales, en el que cada uno de dos investigadores realiza una acción sobre la misma partícula de luz, llamada fotón. Estas manipulaciones consisten, por ejemplo, en modificar una propiedad de este fotón, lo que se denomina “modo espacial”.

El orden en el que ocurren las dos operaciones está determinado, no por los propios científicos, sino por el valor de otra propiedad del fotón, llamada «polarización».

Cuando la polarización del fotón está en una «superposición cuántica» de dos valores distintos, y después de que un tercer experimentador haya medido esta polarización al final del experimento, no se puede describir lo que ha pasado.

¿La gota se eleva de nuevo antes de aterrizar? Elias Kaufhof / Unsplash , CC BY

Orden incierto

Es imposible describirlo, ni poniendo en primer lugar la manipulación del fotón antes de ser enviada al segundo investigador, ni cambiando el orden causal al revés.

Esta intrigante investigación se encuentra todavía en sus primeras etapas. Permitirá estudiar el comportamiento de las relaciones temporales o causales a muy pequeña escala, en el mundo cuántico.

Es importante dar sentido a la ausencia de un orden temporal o causal entre eventos. De hecho, el orden de los eventos a través del tiempo (y el espacio) forma la base sobre la cual los humanos construyen su comprensión de todo.

Por ejemplo, cuando un objeto se rompe después de una caída, lo explicamos por su impacto con el suelo, después de haber seguido un camino específico en el aire.

Asimismo, la historia de la humanidad se cuenta mediante el desarrollo de una sucesión continua de hechos que han ocurrido en diversas partes del mundo, en momentos muy concretos.

Futuro y pasado

Para mantener nuestros métodos de razonamiento clásicos, por lo tanto, debemos comprender qué sucede con las nociones de tiempo y espacio en el mundo cuántico. También debemos dar sentido a su posible ausencia.

Para responder a estas preguntas, ciertos filósofos y físicos consideran, por ejemplo, que el futuro puede influir en el pasado. Otros contemplan la idea de que el tiempo y el espacio sólo pueden ser el «subproducto» de fenómenos más fundamentales, cuya naturaleza aún no se ha comprendido.

Finalmente, el descubrimiento del «interruptor cuántico» y los órdenes causales indefinidos bien podrían resultar útiles en el campo de la informática cuántica y para el desarrollo de futuras «computadoras cuánticas» de nuevo tipo.

De hecho, la existencia de estos fenómenos podría aprovecharse para realizar nuevos desarrollos. También podrían hacer posible realizar ciertos cálculos de manera más eficiente que con más computadoras cuánticas estándar. Así, la investigación reciente en física cuántica promete posibles revoluciones, tanto filosóficas como tecnológicas.

FUENTE: (*Laurie Letertre es estudiante de doctorado en filosofía de la física en la Universidad Grenoble Alpes (UGA). Este artículo se publicó originalmente en The Conversation. Se reproduce con autorización.

Imagen superior: Stan Bonnar, Flickr.